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Generative models for protein sequences
Modèles génératifs pour les séquences de protéines
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Rat Trypsin structure

Different approaches
‣ Observe their structure (X-ray crystallography…)
‣ Simulate them using structure (Molecular Dynamics…)
‣ Modify them (mutational scans…)
‣ Learn from evolution (statistical models…)
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Cocco et al., Rep. Prog. Phys., 2018
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Different approaches
‣ Observe their structure (X-ray crystallography…)
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Study proteins by learning from evolution

To find
‣ Conservations (important amino-acids)
‣ Correlations (important interactions)

Why statistical models?
‣ Protein sequences are shaped by evolutionary pressure
‣ Many sequences can have similar structure and function: family

‣ Build a Multiple Sequence Alignment (MSA)
‣ Look for statistical signatures

How?
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5Statistical learning on a protein family

Enough data for advanced methods
‣ Massive expansion of available sequences in the last two decades
‣ Approaches grounded in statistical physics 
‣ Deep learning methods

Shendure et al., Nature biotechnology, 2008
Jain et al., Genome biology, 2016

Weigt et al., PNAS, 2009 
Rivoire et al., PLoS CB, 2016 UniProt, NAR, 2025 
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Specificity

Catalytic activity

Substrate

Morcos F et al., PNAS,  2011

Contact prediction

S1A sectors mapped onto rat trypsin structure

Halabi et al., Cell, 2009

Different methods capture different interaction scales
‣ From contacting pairs (ex: Direct Coupling Analysis)
‣ To coevolving groups (ex: Statistical Coupling Analysis)

Statistical Coupling Analysis applied to S1A family 
‣ 3 coevolving groups (sectors)
‣ Structurally connected
‣ Functionally independent (mutagenesis experiments)

Shendure et al., Nature biotechnology, 2008
Jain et al., Genome biology, 2016

Weigt et al., PNAS, 2009 
Rivoire et al., PLoS CB, 2016 UniProt, NAR, 2025 
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For what?
‣ Design-oriented goal: make new proteins
‣ Framework for understanding: parametrization of the system 
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‣ Variational Autoencoders, Diffusion models, Transformers, Restricted 

Boltzmann Machine, Boltzmann Machine…

Boltzmann Machine
‣ Interpretability
‣ Generative capacity experimentally tested (Russ et al. 2020)

‣ Mapping with other models Hawkins-Hooker et al., PLoS CB, 2021
Repecka et al., Nature Machine Intelligence, 2021

Sgarbossa et al., Elife, 2023
Watson L et al., Nature, 2023
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Cocco et al., Rep. Prog. Phys., 2018

Morcos et al., PNAS, 2011
Weigt et al., PNAS, 2009

Hopf et al., Nature biotechnology, 2017
Russ et al., Science, 2020
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‣ Graphical model: fully connected graph
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i j

‣ Trained to capture frequencies and pairwise 
frequencies (Maximum entropy approach) , fi(a) fij(a, b)
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Results

‣ Predict structural contacts
‣ Predict mutational effect
‣ Generative with low-temperature sampling (Russ et al., 2020)

 with P({σi}i=1,...,L) ∼ e− E(h, J)
T T < 1

Ackley et al., Cognitive science, 1985
Cocco et al., Rep. Prog. Phys., 2018

Morcos et al., PNAS, 2011
Weigt et al., PNAS, 2009

Hopf et al., Nature biotechnology, 2017
Russ et al., Science, 2020
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‣ # parameters   # sequences∼ 105 − 107 ≫ ∼ 102 − 105
Problem

‣ Extreme statistics from undersampling  infinite parameters→

The undersampling problem

‣ Remove parameters (Pruning, Alphabet reduction…)
Regularization methods

‣ Modify statistics (pseudo-counts)

‣ Constrain parameters during optimization (  norm…)Lp

Morcos et al., PNAS, 2011

Halabi et al., Cell, 2009

Importance of data’s statistical structure

‣ Real data often have rich statistical structure 
‣ Proteins: Correlated units of different sizes, magnitude…
‣ Uneven impact of undersampling on different statistical 

signatures (Kleeorin et al. 2023)
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The undersampling problem Investigate protein properties with statistical learning

Specificity mechanism in S1A 
family

Overcoming undersampling 
induced biases

Allosteric network of 
E. Coli DHFR

In collaboration with Emily Hinds, Yaakov 
Kleeorin, Rama Ranganathan (University of 

Chicago, USA)

In collaboration with Amaury Paveyranne, 
Timothé Lucas, Shoichi Yip, Clément Nizak 

(LJP, Sorbonne University, France)

In collaboration with Paul Guenon, Damien Laage, 
Guillaume Stirnemann (ENS, France), Clément 
Nizak (LJP, France), Karolina Filipowska, Kim 

Reynolds (University of Texas, USA)



The Undersampling problem

In collaboration with Emily Hinds, Yaakov Kleeorin, 
Rama Ranganathan (University of Chicago, USA)
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I. Undersampling-induced biases (Kleeorin et al., Cell system, 2023)

II. Generative Capacity of the Boltzmann Machine (Russ et al., Science, 2020)

The undersampling problem

III. New inference method: Stochastic Boltzmann Machine
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Toy model features

‣ Boltzmann Machine model
‣ Correlated units of different sizes

I. Undersampling-induced biases (Kleeorin et al. 2023)
Assess model performance with a toy model

Kleeorin et al., Cell system 2023
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‣ Boltzmann Machine model
‣ Correlated units of different sizes

I. Undersampling-induced biases (Kleeorin et al. 2023)
Assess model performance with a toy model

Inference:

‣ Undersampling regime
‣ Log-likelihood maximization with  regularizationL2

 θ* = arg max
θ [ 1

M

M

∑
m=1

log P(σ(m) ∣ θ) − λJ∥J∥2 − λh∥h∥2]

Kleeorin et al., Cell system 2023
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L = 20, q = 10, M = 300
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Inference as function of regularization strength

Real data
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∥
̂

J i
j∥

Chorismate Mutase
L = 96, M = 1258

‣ Relevance for real protein data

 (regularization)λJ



16Generative Capacity of the Boltzmann Machine (Russ et al. 2020)
Application to the Chorismate Mutase family

DiversityFidelity Novelty
How much do the artificial sequences 

differ from the training data?

 Generalization capacity→

Do the artificial sequences 
span the same range of 

variability as the training 
data?

Do the artificial proteins 
share key properties with 

those observed in the 
training data?
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Figures made from Russ et al., Science 2020 data (sequences tested in E. Coli)

II. Generative Capacity of the Boltzmann Machine (Russ et al. 2020)

 regularization: L2 λ = 0.01

Application to the Chorismate Mutase family

DiversityFidelity
 of taxonomic families represented%Fraction of functional sequences

Novelty
Distribution of identity to the nearest natural sequence
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Figures made from Russ et al., Science 2020 data (sequences tested in E. Coli)

II. Generative Capacity of the Boltzmann Machine (Russ et al. 2020)

 regularization: L2 λ = 0.01

Application to the Chorismate Mutase family

‣ The gain in functionality comes at the cost of reduced diversity and novelty
‣ Functional sequences requires low-temperature sampling:  with P({σi}i=1,...,L) ∼ e− E(h, J)

T T < 1

DiversityFidelity
 of taxonomic families represented%Fraction of functional sequences

Novelty
Distribution of identity to the nearest natural sequence

‣ Success may depend on the experimental assay
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‣ Real data?

Figures made following the methodology of Kleeorin et al.

III. Stochastic Boltzmann Machine
Assess model performance with a toy model

(regularization)

True Value

∥
̂

J i
j∥

 (regularization)λJ

L = 20, q = 10, M = 300
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Fidelity

The experiments were performed by Emily Hinds
The models are inferred with , ,   kmc = 105 Niter = 400 θ = 0.3

λ = 0.01 Nchains = 50

Diversity
 of taxonomic families represented%

Novelty
Distribution of identity to the nearest natural sequenceFraction of functional sequences

890, 193 and 180 sequences were tested for the natural dataset, the SBM and the BM models respectively

Relevance to real proteins: application to the chorismate mutase family
III. Stochastic Boltzmann Machine
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λ = 0.01 Nchains = 50

Stochastic Boltzmann Machine
‣ Toy model: correct undersampling-induced biases
‣ Real data: generative without low-temperature sampling
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The undersampling problem Investigate protein properties with statistical learning

A B
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= 30Nchains
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D Chymotrypsin activity

Chymotrypsin activity
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Specificity mechanism in S1A 
family

Allosteric network of 
E. Coli DHFR

Overcoming undersampling 
induced biases

G121

FG loop

Met20 loop

In collaboration with Emily Hinds, Yaakov 
Kleeorin, Rama Ranganathan (University of 

Chicago, USA)

In collaboration with Amaury Paveyranne, 
Timothé Lucas, Shoichi Yip, Clément Nizak 

(LJP, Sorbonne University, France)

In collaboration with Paul Guenon, Damien Laage, 
Guillaume Stirnemann (ENS, France), Clément 
Nizak (LJP, France), Karolina Filipowska, Kim 

Reynolds (University of Texas, USA)



Investigate the determinant of 
specificity within S1A family

In collaboration with Amaury Paveyranne, Timothé Lucas, 
Shoichi Yip, Clément Nizak (LJP, Sorbonne University, France)



26S1A serine proteases protein family

The basics
‣ Catalyzes peptide bound hydrolysis
‣ Many substrate specificities

Positively 
charged

Trypsin

Aromatic

Chymotrypsin

Di Cera, IUBMB 2009
Hedstrom, Chemical reviews 2002

Barrett et al., 2012



26S1A serine proteases protein family

The basics
‣ Catalyzes peptide bound hydrolysis
‣ Many substrate specificities

Specificity
‣ Cleavage after a specific amino-acid
‣ Efficiency can vary up to -fold depending on the amino acid105

‣ Mechanism not fully understood

Positively 
charged

Trypsin

Aromatic

Chymotrypsin

Di Cera, IUBMB 2009
Hedstrom, Chemical reviews 2002

Barrett et al., 2012
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Positively 
charged

Trypsin

Conversion
Aromatic

Chymotrypsin

A rare success in specificity conversion: Trypsin  Chymotrypsin→

Gráf et al., PNAS 1988
Hedstrom et al., Science 1992

Hedstrom et al., Biochemistry 1994
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Positively 
charged

Trypsin

Conversion
Aromatic

Chymotrypsin

Structural approach
‣ Focus on binding pocket
‣ Residu 189 sufficient to convert specificity? No (Gráf et al. 1988)

Inhibitor protein
Binding pocket

Residu 189Rat Trypsin structure

A rare success in specificity conversion: Trypsin  Chymotrypsin→

Gráf et al., PNAS 1988
Hedstrom et al., Science 1992

Hedstrom et al., Biochemistry 1994



28A rare success in specificity conversion: Trypsin  Chymotrypsin→

Structural approach
‣ Focus on binding pocket
‣ Residu 189 sufficient to convert specificity? No (Gráf et al. 1988)

Inhibitor protein
Binding pocket

Residu 189
Rat Trypsin structure

Evolutionary approach
‣ Analysis of trypsin and chymotrypsin sequences
‣ Conversion with 16 mutations (Hedstrom et al. 1994)

Rat Trypsin structure

Hedstrom swap

> 10 Å

Positively 
charged

Trypsin

Conversion
Aromatic

Chymotrypsin

Failure

Gráf et al., PNAS 1988
Hedstrom et al., Science 1992

Hedstrom et al., Biochemistry 1994
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Positively 
charged

Trypsin

16 mutations
Aromatic

Chymotrypsin

Failure

Boltzmann Machine-guided specificity conversion
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Positively 
charged

Trypsin

16 mutations
Aromatic

Chymotrypsin

Failure

Our approach
‣ Impose a mutation at site 189
‣ Predict compensatory mutations using Boltzmann Machine model
‣ Identify positive epistatic interactions using model couplings

Residu 189
Rat Trypsin structure

Boltzmann Machine-guided specificity conversion
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Hedstrom swap

In silico comparison with Hedstrom

Compensatory mut.

Positively 
charged

Trypsin

Conversion
Aromatic

Chymotrypsin
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The experiments were performed by Amaury Paveyranne, Timothé Lucas and Shoichi Yip

Preliminary experimental results

Chymotrypsin activity

Not possible to make quantitative 
comparisons here!

30Boltzmann Machine-guided specificity conversion

Hedstrom swap

In silico comparison with Hedstrom

Compensatory mut.

Positively 
charged

Trypsin

Conversion
Aromatic

Chymotrypsin

Zoom on the binding pocket

D189

G226

Y228

‣ Mutations located in the binding pocket

Other results & next steps:

‣ Other conversions

‣ More precise characterization of 
functional mutants

‣ Evidence of chymotrypsin activity 3 
mutations away from rat trypsin
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Allosteric network of E. Coli DHFR
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Guillaume Stirnemann (ENS, France), Clément 
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G121

FG loop

Met20 loop

Support for an allosteric 
mechanism obtained through 

molecular dynamics simulations

Investigate protein properties with statistical learning
Specificity conversion in S1A 

family?
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