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Proteins

The basics
» 20 building blocks: amino acids
» Assembled into chains
» Sequence encoded 1n the DNA

» Non-trivially ordered matter

» Life’s essential machines (catalysis, transport,
signaling, immune defense, structure...)

Performance & adaptability
» High catalytic efficiency (enzymes)

» Specific interaction with target molecules

» Capacity to evolve new functions

Why are proteins worth studying?
» Understand how proteins work

» Applications in medicine, industry...
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Study proteins by learning from evolution

Different approaches
» Observe their structure (X-ray crystallography...)
» Simulate them using structure (Molecular Dynamics...)

» Modify them (mutational scans...)

» Learn from evolution (statistical models...) Eftc...

Rat Trypsin structure

Kendrew et al., Nature, 1958 M Fowler et al., Nature methods, 2014
C Edgar et al., Current opinion in structural biology, 2006 Cocco et al., Rep. Prog. Phys., 2018



Study proteins by learning from evolution

Different approaches
» Observe their structure (X-ray crystallography...)

» Simulate them using structure (Molecular Dynamics...)

» Modify them (mutational scans...)

» Learn from evolution (statistical models...) Eftc...

Why statistical models? M IVGGYTCQ eee CNYVDWIOQ

» Protein sequences are shaped by evolutionary pressure g

» Many sequences can have similar structure and function: family

Kendrew et al., Nature, 1958 M Fowler et al., Nature methods, 2014
C Edgar et al., Current opinion in structural biology, 2006 Cocco et al., Rep. Prog. Phys., 2018



Study proteins by learning from evolution

Different approaches
» Observe their structure (X-ray crystallography...)
» Simulate them using structure (Molecular Dynamics...)

» Modify them (mutational scans...)

» Learn from evolution (statistical models...) Eftc...

Why statistical models? M IVGCGEYTCQ eee CNYVDWIOQ
» Protein sequences are shaped by evolutionary pressure g
» Many sequences can have similar structure and function: family Multiple Sequence Alignment
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» Collect sequences with shared structure and function
» Build a Multiple Sequence Alignment (MSA)

» Look for statistical signatures

Sequences
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Study proteins by learning from evolution

Different approaches
» Observe their structure (X-ray crystallography...)
» Simulate them using structure (Molecular Dynamics...)

» Modify them (mutational scans...)

Sequences

A B WO DN o
® o o o o

» Learn from evolution (statistical models...) Eftc...

Why statistical models?
» Protein sequences are shaped by evolutionary pressure

» Many sequences can have similar structure and function: family

How?
» Collect sequences with shared structure and function
» Build a Multiple Sequence Alignment (MSA)

» Look for statistical signatures

To find

» Conservations (1mportant amino-acids)

Sequences
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» Correlations (1mportant interactions)
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Statistical learning on a protein family

Number of UniProtKB entries over time

Enough data for advanced methods
» Massive expansion of available sequences 1n the last two decades 220M
» Approaches grounded 1n statistical physics é som
» Deep learning methods oy 1M
'Eg 100M
=
-
7, 60M

1992 2000 2008 2016 2024

Years

Shendure et al., Nature biotechnology, 2008 Weigt et al., PNAS, 2009
Jain et al., Genome biology, 2016 Rivoire et al., PLoS CB, 2016  UniProt, NAR, 2025



Statistical learning on a protein family

Enough data for advanced methods

Contact prediction

» Massive expansion of available sequences in the last two decades
» Approaches grounded 1n statistical physics

» Deep learning methods

° [ ° ° M F ! Z., PNAS, 2011
Different methods capture different interaction scales orcos et a

» From contacting pairs (ex: Direct Coupling Analysis)

» To coevolving groups (ex: Statistical Coupling Analysis) S1A sectors mapped onto rat trypsin structure
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Statistical learning on a protein family

Enough data for advanced methods
Contact prediction

XU (L

Morcos F et al., PNAS, 2011

» Massive expansion of available sequences in the last two decades

» Approaches grounded 1n statistical physics

» Deep learning methods

o

Different methods capture different interaction scales
» From contacting pairs (ex: Direct Coupling Analysis)

» To coevolving groups (ex: Statistical Coupling Analysis)
Specificity
Statistical Coupling Analysis applied to S1A family

» 3 coevolving groups (sectors)
» Structurally connected

» Functionally independent (mutagenesis experiments)

Shendure et al., Nature biotechnology, 2008 Weigt et al., PNAS, 2009
Jain et al., Genome biology, 2016 Rivoire et al., PLoS CB, 2016  UniProt, NAR, 2025

S1A sectors mapped onto rat trypsin structure

Halabi1 et al., Cell, 2009
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Generative models for protein sequences

Training data

Principle IVGGYTCQ +++ CNYVDWIQ . ,
L T . g (cnerative
» Probability distribution over protein sequences TTNGAYDG +++ TSQLNWIR »==--» odel
IVGGYTCQ eee CNYVDWIQ
Y
. Sample
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Artificial data ~ P 40
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IVGGYTCQ eee CNYVDWIOQ

Hawkins-Hooker et al., PLoS CB, 2021

Repecka et al., Nature Machine Intelligence, 2021
Sgarbossa et al., Elife, 2023

Watson L et al., Nature, 2023
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Hawkins-Hooker et al., PLoS CB, 2021

Repecka et al., Nature Machine Intelligence, 2021
Sgarbossa et al., Elife, 2023

Watson L et al., Nature, 2023



Generative models for protein sequences

Training data

Principle IVGGYTCQ +++ CNYVDWIQ . ,
L T . g (cnerative
» Probability distribution over protein sequences TTNGAYDG +++ TSQLNWIR »==--» odel
IVGGYTCQ eee CNYVDWIQ
For what? ¥ Sample
» Design-oriented goal: make new proteins v
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» Framework for understanding: parametrization of the system

Modeling a protein family

» High dimensional sequence space ~ 1096 — 10930

» Model evaluation: wet-lab characterization, 1n silico evaluations...

Model

» Variational Autoencoders, Diffusion models, Transformers, Restricted
Boltzmann Machine, Boltzmann Machine...

Hawkins-Hooker et al., PLoS CB, 2021

Repecka et al., Nature Machine Intelligence, 2021
Sgarbossa et al., Elife, 2023
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Training data
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» Design-oriented goal: make new proteins v
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» Framework for understanding: parametrization of the system

Modeling a protein family

» High dimensional sequence space ~ 10°° — 10"
» Model evaluation: wet-lab characterization, 1n silico evaluations...

Model

» Variational Autoencoders, Diffusion models, Transformers, Restricted
Boltzmann Machine, Boltzmann Machine...

Boltzmann Machine

» Interpretability » Mapping with other models Hawkins-Hooksr of ai. PLoS CB, 2021

Repecka et al., Nature Machine Intelligence, 2021
Sgarbossa et al., Elife, 2023
Watson L et al., Nature, 2023

» Generative capacity experimentally tested (Russ et al. 2020)
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Modeling a protein family with a Boltzmann Machine (BM)

.. Multiple Sequence Alignment
Principle

Positions

1 L

» Modeling of a protein family 1

Sequences

M~ 10% — 10°
L ~ 50 =500

Hopf et al., Nature biotechnology, 2017 Morcos et al., PNAS, 2011  Ackley et al., Cognitive science, 1985
Russ et al., Science, 2020 Weigt et al., PNAS, 2009  Cocco et al., Rep. Prog. Phys., 2018
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.. Multiple Sequence Alignment
Principle
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» Graphical model: fully connected graph @ :
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Modeling a protein family with a Boltzmann Machine (BM)

.. Multiple Sequence Alignment
Principle

Positions

» Modeling of a protein family @ @ . 1 L
» Graphical model: fully connected graph @ :
» Potts model 3 y

P({Ui}i=1,...,L)

L
p 2. o) + ZKJ- Ji(0,,0;)

/

P({Ui}i=1,...,L) —

Hopf et al., Nature biotechnology, 2017 Morcos et al., PNAS, 2011  Ackley et al., Cognitive science, 1985
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Modeling a protein family with a Boltzmann Machine (BM)

Multiple Sequence Alignment

Principle -
. . . @ 1OSl 10118 ] ]. .
» Modeling of a protein family @ @ . : :
» Graphical model: fully connected graph @ :
» Potts model g N
» Trained to capture frequencies and pairwise P({0;}i=1....1) —
frequencies (Maximum entropy approach) zp (@.b)
s S\

&ouplings

L
p 2. o) + ZKJ- Ji(0,,0;)

P({Ui}i=1,...,L) = /

Hopf et al., Nature biotechnology, 2017 Morcos et al., PNAS, 2011  Ackley et al., Cognitive science, 1985
Russ et al., Science, 2020 Weigt et al., PNAS, 2009  Cocco et al., Rep. Prog. Phys., 2018
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.. Multiple Sequence Alignment
Principle

Positions

1
1

- .
c~

» Modeling of a protein family

» Graphical model: fully connected graph
» Potts model

» Trained to capture frequencies and pairwise P({0;}i=1....1) -

frequencies (Maximum entropy approach) z‘--(a b)
s Jj\Mo

Sequences

Inference
» Parameters that maximize the probability of kouphngs
natural sequences (MLE)

L
» Other methods: Mean field, Pseudo-likelihood o Lz 1i0) + 2 Ji(0,0)
maximization, Autoregressive model... P ({Gi}i=1,..., 1) = >

Hopf et al., Nature biotechnology, 2017 Morcos et al., PNAS, 2011  Ackley et al., Cognitive science, 1985
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Modeling a protein family with a Boltzmann Machine (BM)

.. Multiple Sequence Alignment
Principle

Positions
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» Modeling of a protein family

» Graphical model: fully connected graph
» Potts model

» Trained to capture frequencies and pairwise P({0;}i=1....1) -
frequencies (Maximum entropy approach) }(a b
» Jj\H

Sequences

Inference
» Parameters that maximize the probability of kouphngs
natural sequences (MLE)

L
» Other methods: Mean field, Pseudo-likelihood o Lz 1i0) + 2 Ji(0,0)
maximization, Autoregressive model... P ({Gi}i=1,..., 1) = >

Results

» Predict structural contacts o
» Predict mutational effect P({o;};=y 1) ~e T withT <1

» Generative with low-temperature sampling (Russ et al., 2020)

Hopf et al., Nature biotechnology, 2017 Morcos et al., PNAS, 2011  Ackley et al., Cognitive science, 1985
Russ et al., Science, 2020 Weigt et al., PNAS, 2009  Cocco et al., Rep. Prog. Phys., 2018



The undersampling problem

Problem
» # parameters ~ 10° — 107 > # sequences ~ 10% — 10°

» Extreme statistics from undersampling — 1infinite parameters

Sequences

1

Multiple Sequence Alignment

Positions

1
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The undersampling problem

Problem
» # parameters ~ 10° — 107 > # sequences ~ 10% — 10°

» Extreme statistics from undersampling — 1infinite parameters

Sequences

Regularization methods
» Remove parameters (Pruning, Alphabet reduction...)
» Modity statistics (pseudo-counts)

» Constrain parameters during optimization (L, norm...)
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The undersampling problem

Problem Multiple Sequence Alignment

Positions

1
1

» # parameters ~ 10° — 107 > # sequences ~ 10% — 10°

» Extreme statistics from undersampling — 1infinite parameters

Sequences

Regularization methods v
» Remove parameters (Pruning, Alphabet reduction...)
» Modity statistics (pseudo-counts)

» Constrain parameters during optimization (L, norm...)

Importance of data’s statistical structure

» Real data often have rich statistical structure
» Proteins: Correlated units of different sizes, magnitude...

» Uneven impact of undersampling on different statistical
signatures (Kleeorin et al. 2023)

Halabi et al., Cell, 2009

10
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Investigate protein properties with statistical learning

The undersampling problem

Allosteric network of

Specificity mechanism in S1A
E. Coli DHFR

family

Overcoming undersampling
induced biases

sated pajefosy

In collaboration with Paul Guenon, Damien Laage,

In collaboration with Emily Hinds, Yaakov In collaboration with Amaury Paveyranne, . . ,
Kleeorin, Rama Ranganathan (University of Timothé Lucas, Shoichi Yip, Clément Nizak Gylllaume Stirnemann (ENS’ rr c.zr.zce), Cleme.nt
Chicago, USA) (LJP. Sorbonne University, France) Nizak (LJP, ance)., Kaffolma Filipowska, Kim

Reynolds (University of Texas, USA)




The Undersampling problem

In collaboration with Emily Hinds, Yaakov Kleeorin,
Rama Ranganathan (University of Chicago, USA)



The undersampling problem

I. Undersampling-induced biases (Kleeorin ef al., Cell system, 2023)

I1. Generative Capacity of the Boltzmann Machine (Russ et al., Science, 2020)

I11. New inference method: Stochastic Boltzmann Machine

13
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Assess model performance with a toy model
Toy model features

» Boltzmann Machine model
» Correlated units of different sizes

L
e z,-zl hi(o-i) + ZKJ- Jij(o-i’o-j)

/

P({Ui}izl,...,L) =

| Small collective

Large collective

175 ]
Jo

# positions L = 20, # states g = 10, M = 300 Kleeorin et al., Cell system 2023
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Assess model performance with a toy model
Toy model features

» Boltzmann Machine model
» Correlated units of different sizes

L
e z,-zl hi(o-i) + ZKJ- Jij(o-i’o-j)

P({Ui}izl,...,L) =

/

175 ]
Jo

# positions L = 20, # states g = 10, M = 300
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[. Undersampling-induced biases (Kleeorin et al. 2023) 14

Assess model performance with a toy model

Toy model features Inference:
» Boltzmann Machine model » Undersampling regime
» Correlated units of different sizes » Log-likelihood maximization with L, regularization
S, o) + X, o) B '
P({0;}i=1,..1) = - 7 - or=ore mglx M Z log P(6"™ | 6) = 411" = A1kl
M~ _

5_
Inference

@ = = = = = $ 10

15
0 5 10 15
Jinp _— T
H 1] H 0.0 1.0 15 H Z]H
Jo Jo

# positions L = 20, # states g = 10, M = 300 Kleeorin et al., Cell system 2023
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Inference as function of regularization strength

Isolated pairs mmm [ arge collective

=== Small collective Non interacting

O_

10 -

15 ~1

Figures made following the methodology of Kleeorin et al., Cell system 2023
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Inference as function of regularization strength

Isolated pairs mmm [ arge collective
==== Small collective Non interacting TOy model
0 - L =20,g=10, M =300
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- | o True Value
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_ ‘.""*_ \‘\\
— R
<'\b | .\"\
10 - — \
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A; (regularization)

Figures made following the methodology of Kleeorin et al., Cell system 2023
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Inference as function of regularization strength

Isolated pairs mmm [ arge collective
==== Small collective Non interacting TOy model
0 - L =20, g =10, M =300
~~*
D
101 S
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L. o Sy

I 0~ \\

— R

<'\b | .\"\
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10° \
\
\
15 - \
|
107> 104 1073 1072 1071 10°

A; (regularization)

» Systematic bias between the estimation of collective modes and 1solated interactions

Figures made following the methodology of Kleeorin et al., Cell system 2023



[. Undersampling-induced biases (Kleeorin et al. 2023)

Inference as function of regularization strength

Isolated pairs mmm [ arge collective

=== Small collective Non interacting

Toy model

0 - L =20, q=10, M =300
~
; B Uy True Value
____________________ LSy, SRt L U N O I R g O A I R A A
-—‘. ~
e Sma
Bt N
10 - \
\
\
\
15 - \
|
10~4 103 102 101 100

A; (regularization)

Real data

Contacts

® Functional Positions

10-1- Others

Chorismate Mutase
L =96, M = 1258

164 100

A; (regularization)

» Systematic bias between the estimation of collective modes and 1solated interactions

» Relevance for real protein data

Figures made following the methodology of Kleeorin et al., Cell system 2023



Generative Capacity of the Boltzmann Machine (Russ ef al. 2020)

Application to the Chorismate Mutase family

Fidelity Novelty Diversity

Do the artificial proteins How much do the artificial sequences Do the artificial sequences
share key properties with differ from the training data? span the same range of
those observed in the variability as the training

training data? — Generalization capacity data?

16



II. Generative Capacity of the Boltzmann Machine (Russ et al. 2020)

Application to the Chorismate Mutase family

Fidelity Novelty Diversity

Fraction of functional sequences Distribution of identity to the nearest natural sequence % of taxonomic families represented
70 50
0.07 - Natural seq. . 11%
- 60- _ K
X | 0.06 E 40
© 50 3 - ©
g 37% % 0.05 y—
. > @ 301
= -
2 :
20.03- 0 20-
o Q
Q- 0.02 O
S 10+
0.01 ©
0.00 - - - - .
Nat. 0 20 40 60 80 100 0= \at.

ID to Nearest Natural

L, regularization: 4 = 0.01

Figures made from Russ et al., Science 2020 data (sequences tested in E. Coli)
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Application to the Chorismate Mutase family

Fidelity Novelty Diversity

Fraction of functional sequences Distribution of identity to the nearest natural sequence % of taxonomic families represented
70 50
0.07 - 7I\I_attiral seq. ., 41%
= 60 _ — K
X 0.06 = 40-
T 50- S 5
C 37% g 0-05 - 28%
. >, @ 307
pp— C
2 :
20.03- D 20-
o Q
Q- 0.02- g
1% 0.01- o 10
— 0.00 - - . . |
Nat. T=1 0 20 40 60 380 100 Nat.

ID to Nearest Natural

L, regularization: 4 = 0.01

Figures made from Russ et al., Science 2020 data (sequences tested in E. Coli)
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Application to the Chorismate Mutase family

Fidelity Novelty Diversity

Fraction of functional sequences Distribution of identity to the nearest natural sequence % of taxonomic families represented
70 50
0.07 - Na_tural seq. . 41%
= “P1 3 T=0.66 Z 40-
T 50- S G
C 37% g 005 - 28%
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£ 40 30% = 0.04- S
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o O o
+ 207 0-0.02- v
(© Y= |
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ID to Nearest Natural

L, regularization: 4 = 0.01

Figures made from Russ et al., Science 2020 data (sequences tested in E. Coli)




II. Generative Capacity of the Boltzmann Machine (Russ et al. 2020)

Application to the Chorismate Mutase family

Fidelity

Fraction of functional sequences

Novelty

Distribution of identity to the nearest natural sequence

Diversity

% of taxonomic families represented

70 50
570, 0.07 - 7I\I_attiral seq. . 41%
< 60- 0.06- _ = 40-
D _ 1 T=0.66 = 40
— 5§ - C - T=0.33 (©
= 37% ©0.05 -
© 40 30% 2 0.04 g 30
> o 9
HE 30 S 0.03- O 20 13% 14%
O = 2
"% 20_ 002' ] : 1 I
i 10- 1% 0.01- I_I-r <
0- . 0.00 - - - - .
Nat. T=0.33 T=0.66 T=1 0 20 40 60 80 100 Nat. T=0.33 T=0.66 T=1

ID to Nearest Natural

. . . E(h.J)
» Functional sequences requires low-temperature sampling: P({0;},_; ;) ~e 7 withT <1

» The gain 1n functionality comes at the cost of reduced diversity and novelty

L, regularization: 4 = 0.01

Figures made from Russ et al., Science 2020 data (sequences tested in E. Coli)
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II. Generative Capacity of the Boltzmann Machine (Russ et al. 2020)

Application to the Chorismate Mutase family

Fidelity

Fraction of functional sequences

Novelty

Distribution of identity to the nearest natural sequence

Diversity

% of taxonomic families represented

70 50
570, 0.07 - 7I\I_attiral seq. . 41%
< 60- 0.06- _ = 40-
D _ 1 T=0.66 = 40
— 5§ - C - T=0.33 (©
= 37% ©0.05 -
© 40 30% 2 0.04 g 30
> o 9
HE 30 S 0.03- O 20 13% 14%
O = 2
"% 20_ 002' ] : 1 I
i 10- 1% 0.01- I_I-r <
0- . 0.00 . . . . | |
Nat. T=0.33 T=0.66 T=1 0 20 40 60 80 100 Nat. T=0.33 T=0.66 T=1

ID to Nearest Natural

. . . E(h.J)
» Functional sequences requires low-temperature sampling: P({0;},_; ;) ~e 7 withT <1

» The gain 1n functionality comes at the cost of reduced diversity and novelty

» Success may depend on the experimental assay

L, regularization: 4 = 0.01

Figures made from Russ et al., Science 2020 data (sequences tested in E. Coli)
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I1I. Stochastic Boltzmann Machine

Assess model performance with a toy model

1 M
0={(Jh) fO)=— Zl log P(6™ | 0) — LIJI? = 2,1k

m=

0.,.,=0—np,

1% order: p, = — V£(6,)
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I1I. Stochastic Boltzmann Machine

Assess model performance with a toy model

1 M
0={(Jh) fO)=— Zl log P(6™ | 0) — LIJI? = 2,1k

m=

N chains

MCMC
Niter
ooo P
91‘ HH-l
of(0)

aJij(a, b)

Empirical

0.,.,=0—np,

1% order: p, = — Vf(0)

— f;'j(a’ b) — <5(Gl-, Cl)é(ﬂj, b)> + ﬂjjlj(aa b)

Model

13



I1I. Stochastic Boltzmann Machine

Assess model performance with a toy model

1 M
0={(Jh) fO)=— Zl log P(6™ | 0) — LIJI? = 2,1k

m=

J Pair-freq.

N chains

|

MCMC
Niter
ooo P
91‘ HH-l
of(0)
= f(a.b) — (§(c.
o@D fii(a, b) — (&(o,

Empirical

0.,.,=0,—np,

1% order: p, = — Vf(0)

0)5(c, b)) + A;J:(a, b)
Model



I1I. Stochastic Boltzmann Machine

Assess model performance with a toy model

Toy model

1 M
0={(Jh) fO)=— Zl log P(6™ | 0) — LIJI? = 2,1k

m=

10 -
| Small collective

15 1

Large collective

o Freq.

o ]
J J Pair-freq.

N chains

0., =0,—np,

4 1*" order: p, = — V£(0)
Niter
(X X -|->
Qt Ht+1
0f(0)
ey =) = (30,030, ) + A fa.)

Empirical Model



I1I. Stochastic Boltzmann Machine

Assess model performance with a toy model

BM
L, regularization | M
1*" order: p, = — Vf(6,) 0={Jn) JO)=— D logP(6™ | 6) — A,|TI1> = A,liRI?
m=1

True Value [ 7 & 2 ] i
o2 = . - req.

> T S . . Pair-freq.

s Q. — _

g = ‘J Hl‘+l =60, — n,p,

° MCMC

1% order: p, = — V£(6,)
N iter
o0eo 1—}
Qt 9t+1

A; (regularization)

B
0.05 0.1 a 0
/(0) = fia,b) — (6(0;, a)d(0;, D)) + A;J;(a, b)

0.001 0.003 0.005 0.01

dJ-(a, b)
Y Empirical Model

All models are inferred with k_. = 10°, N.._. = 5000



I1I. Stochastic Boltzmann Machine

Assess model performance with a toy model

BM
L, regularization | M
1*" order: p, = — Vf(6,) 0={Jn) JO)=— D logP(6™ | 6) — A,|TI1> = A,liRI?
m=1

True Value [ 7 & 2 ]
‘ T © EJ—‘ g : : Freq.
i j §_. S ° ° Pair-freq. 0 _ 0 _
‘ g 2 ‘ t+1 — Yy — NPy
’ MCMC of
1* order: p, = — Vf(0,)
N. iter
e0o 1—}
Qt 9t+1

A; (regularization)

B
0.05 0.1 a 0
/(0) = fia,b) — (6(0;, a)d(0;, D)) + A;J;(a, b)

0.001 0.003 0.005 0.01

dJ-(a, b)
Y Empirical Model

All models are inferred with k__ = 10°, N;._. = 5000



I1I. Stochastic Boltzmann Machine 20

BM

L, regularization

2" order: p, = — B, 'V£0)

BM

L, regularization

1% order: p, = — V£(6))
L-BFGS algorithm

Why?
» High dimensional space ~ 10*

True Value |

» 1% order suboptimal because
of anisotropic curvature

© r N W NS e o
sared pajefosy

How?

» Curvature information from
the m most recent 1terations

p, = — B Vf@)

A; (regularization)

B
001 005 0.1

0.001 0.003  0.005

N,.. = 5000

All models are inferred with k. = 10°, ter
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BM

L, regularization

2" order: p, = — B, 'V£0)

BM

L, regularization

1% order: p, = — V£(6))
L-BFGS algorithm

Why?
» High dimensional space ~ 10*

True Value |

» 1% order suboptimal because
of anisotropic curvature

sated pajefosy

© r N W NS e o
sared pajefosy

How?

» Curvature information from
the m most recent 1terations

A; (regularization) A; (regularization) . —1
BN B p,=— B, Vf(0)
0.001 0.003 0.005 0.01 0.05 0.1 0.001 0.003 0.005 0.01 0.05 0.1
All models are inferred with k_. = 10°, N.._. = 5000



I1I. Stochastic Boltzmann Machine

BM

L, regularization

2" order: p, = — B, 'V£0)

BM

L, regularization

1% order: p, = — Vf(0,)

True Value |

sated pajefosy

O R N W NS e o
sared pajefosy

A; (regularization)

A; (regularization)
L D D
0.1

0.001 0.003 0.005  0.01 0.05 0.1 0.001 0.003 0.005 0.01 0.05

N,.. = 5000

All models are inferred with k. = 10°, ter
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Stochastic Boltzmann Machine
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I1I. Stochastic Boltzmann Machine

BM

L, regularization

2" order: p, = — B, 'V£0)

BM

L, regularization

1" order: p, = — Vf(9,)

True Value |

sated pajefosy

O R N W NS e o
sared pajefosy

A; (regularization)

A; (regularization)
L D D
0.05 0.1

0.001 0.003 0.005  0.01 0.05 0.1 0.001 0.003 0.005 0.01

All models are inferred with k__ = 10°, N;._. = 5000

21

Stochastic Boltzmann Machine
I leirat

2" order: p, = — B V1)

S.de poaje[osy
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ITI. Stochastic Boltzmann Machine
Stochastic Boltzmann Machine

BM Lowering NV ..
. lrinats

L, regularization
1 order: p, = — V£(0)) 2™ order: p, = — B; ' V£(0)
[ [ [ k [

Observation
» Training BM: capture statistics

» But statistics lack reliability
because of undersampling

True Value |

Strategy
» Intentionally undersample the model

sared pajeosy

to mirror data undersampling

TN

0..=0+np,

O H N Ww A U o < o
sared pajefosy

A; (regularization)

B
005 0.1

0.001 0.003 0.005  0.01

N,.. = 5000

All models are inferred with k. = 10°, ter
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Stochastic Boltzmann Machine

BM Lowering NV ..
. lrinats

274 order: p,=—B_ V1)

L, regularization

1% order: p, = — Vf(0,)

Observation
» Training BM: capture statistics

» But statistics lack reliability
because of undersampling

True Value |

Strategy
» Intentionally undersample the model

sared pajeosy

to mirror data undersampling

TN

O H N Ww A U o < o
sared pajefosy

Nhains (regularization)

D
50 30

500 200 100 150

A; (regularization)

B
005 0.1

0.001 0.003 0.005  0.01

» Model undersampling: N4 i
» Slow down convergence: m ~ 1
N. = 5000 » Early stopping: N,

All models are inferred with k. = 10°, ter



I1I. Stochastic Boltzmann Machine

Assess model performance with a toy model

Isolated pairs = | arge collective BM

=== Small collective Non interacting

0- L =20, q =10, M =300
- e e

.
101 RN

5 | B Uy True Value

== rmm————m————=C gt H A H

—=
> »
10- = N
0
10 \
\
15 -
.
107> 1074 10~3 1072 1071 10°

A; (regularization)

0 5

Stochastic Boltzmann Machine

» Toy model: correct undersampling-induced biases
» Real data?

Figures made following the methodology of Kleeorin et al.

10

SBM

22

True Value 205" s
r 8"'"-3' B SRR o o M- yure’y
— Ll ) e
T} 107 167

hains (regularization)



I1I. Stochastic Boltzmann Machine

Relevance to real proteins: application to the chorismate mutase family

Fidelity

Fraction of functional sequences

52%

Nat. BM T=0.75 SBM T=1
/1 — 001 Nchains = 50

The experiments were performed by Emily Hinds
The models are inferred with k__ = 10°, N, = 400, 8 = 0.3

1ter

Novelty

Distribution of identity to the nearest natural sequence

890, 193 and 180 sequences were tested for the natural dataset, the SBM and the BM models respectively

Diversity

% of taxonomic families represented

23



I1I. Stochastic Boltzmann Machine

Relevance to real proteins: application to the chorismate mutase family

Fidelity Novelty Diversity

Fraction of functional sequences Distribution of identity to the nearest natural sequence % of taxonomic families represented
70 o 0.10
—~ 60+ 52% Natural seq.

0.08- 1 BMT=0.75

c [—1 SBM T=1

)

Lo

> 0.001

.i__:

© 0.04-

O

o
0.02

— — 0.00 - - - -
Nat. BM T=0.75 SBM T=1 0 20 40 60 380 100
A =0.01 Noins = 50 ID to Nearest Natural (%)

The experiments were performed by Emily Hinds
The models are inferred with k__ = 10°, N, = 400, 8 = 0.3

1ter
890, 193 and 180 sequences were tested for the natural dataset, the SBM and the BM models respectively



I1I. Stochastic Boltzmann Machine

Relevance to real proteins: application to the chorismate mutase family

Fidelity Novelty Diversity

Fraction of functional sequences Distribution of identity to the nearest natural sequence % of taxonomic families represented
0 o 0.10 50
~60- 52% Natural seq. ” 379%,
0.08- 1 BMT=0.75 E 40 -
8 [—1 SBMT=1 o
20.06- @ 30-
= =
5 :
© 0.04- 2 20-
e O
a v
0.02 “5 10-
<
— _ 0.00 - - - - 0-
Nat. o BMT=0.75" SBM T=1 0 20 40 60 80 100 Nat.  BMT=0.75 SBM T=L1
— = to Nearest Natura
4 =0.01 Nchams 50 (%) A =0.01 N = 50

chains

Stochastic Boltzmann Machine

» Toy model: correct undersampling-induced biases
» Real data: generative without low-temperature sampling

The experiments were performed by Emily Hinds
The models are inferred with k__ = 10°, N, = 400, 8 = 0.3

1ter
890, 193 and 180 sequences were tested for the natural dataset, the SBM and the BM models respectively

23
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The undersampling problem Investigate protein properties with statistical learning

Allosteric network of

Specificity mechanism in S1A
E. Coli DHFR

Overcoming undersampling
induced biases

sated pajefosy

In collaboration with Paul Guenon, Damien Laage,

In collaboration with Emily Hinds, Yaakov In collaboration with Amaury Paveyranne, . . ,
Kleeorin, Rama Ranganathan (University of Timothé Lucas, Shoichi Yip, Clément Nizak Gz./tlllaume Stirnemann (ENS’ rr c.zr.zce), Cleme.nt

(LJP. Sorbonne University, France) Nizak (LJP, France), Karolina Filipowska, Kim
’ ’ Reynolds (University of Texas, USA)

Chicago, USA)




Investigate the determinant of
specificity within S1A family

In collaboration with Amaury Paveyranne, Timothe Lucas,
Shoichi Yip, Clement Nizak (LJP, Sorbonne University, France)



S 1A serine proteases protein family -

The basics
» Catalyzes peptide bound hydrolysis

» Many substrate specificities

Trypsin Chymotrypsin

Positively

charged

Di Cera, IUBMB 2009
Hedstrom, Chemical reviews 2002
Barrett et al., 2012



S 1A serine proteases protein family -

The basics
» Catalyzes peptide bound hydrolysis

» Many substrate specificities

Specificity
» Cleavage after a specific amino-acid

» Efficiency can vary up to 10°-fold depending on the amino acid
» Mechanism not fully understood

Trypsin Chymotrypsin

- ’ Positively
S charged

Di Cera, IUBMB 2009
Hedstrom, Chemical reviews 2002
Barrett et al., 2012



A rare success 1n specificity conversion: Trypsin — Chymotrypsin 21

&

Trypsin Chymotrypsin

~

. Conversion
Positively |

charged

Graf et al., PNAS 1988
Hedstrom et al., Science 1992
Hedstrom et al., Biochemistry 1994



A rare success 1n specificity conversion: Trypsin — Chymotrypsin 21

Structural approach (Q

» Focus on binding pocket

~

» Residu 189 sufficient to convert specificity? No (Graf et al. 1988)

Trypsin Chymotrypsin

. Conversion
Positively |

charged

Rat Trypsin structure Residu 189

Bl Binding pocket

Graf et al., PNAS 1988
Hedstrom et al., Science 1992
Hedstrom et al., Biochemistry 1994



A rare success 1n specificity conversion: Trypsin — Chymotrypsin 28

Structural approach (Q

» Focus on binding pocket

~

» Residu 189 sufficient to convert specificity? No (Graf et al. 1988)

EVOllltiOllal‘y approach Trypsin Chymotrypsin

» Analysis of trypsin and chymotrypsin sequences
» Conversion with (Hedstrom et al. 1994)

. Conversion
Positively |

charged

Rat Trypsin structure Rat Trypsin structure

\, %\\ Residu 189
(AR A
=~ ) R )

Bl Inhibitor protein Graf et al., PNAS 1988

Bl Binding pocket Hedstrom et al., Science 1992
Hedstrom et al., Biochemistry 1994



Boltzmann Machine-guided specificity conversion

Trypsin Chymotrypsin

Positively Y SRR

GBI € == = = = = = = {

Failure

29



Boltzmann Machine-guided specificity conversion

Trypsin Chymotrypsin

Positively Y SRR

charged A il

Failure

&

Our approaCh Rat Trypsin structure
» Impose a mutation at site 189
» Predict compensatory mutations using Boltzmann Machine model

» Identify positive epistatic interactions using model couplings

Residu 189

29



Boltzmann Machine-guided specificity conversion

Trypsin Chymotrypsin

,_ Conversion
Positively [ STFIEEEREEEE
charged

In silico comparison with Hedstrom

30



Boltzmann Machine-guided specificity conversion S0

Trypsin Chymotrypsin L .
Preliminary experimental results
Positivel ’_Conversion_>
OSIUIVCLY [ . s
charged Chymotrypsin activity _ '
- Bovin Chymotrypsin
104 Rat Trypsin ~
Hedstrom (16 mutations) —

In silico comparison with Hedstrom

o Not possible to make quantitative
comparisons here

(=
o
N w

Fluorescence (RFU)
(-]
o

=
o
-
N

i._.__-f"""—i

1000 2000 3000 4000 5000 6000
Time (s)

=
o
o

o i

The experiments were performed by Amaury Paveyranne, Timothé Lucas and Shoichi Yip



Boltzmann Machine-guided specificity conversion S0

Trypsin Chymotrypsin

Preliminary experimental results

Chymotrypsin activity
| == Bovin Chymotrypsin - Qur approach (3 Mutations) §

1 —— Rat Trypsin - Qur approach (8 Mutations)
] Hedstrom (16 mutations) —

/ /\o Not possible to make quantitative

102—§/ comparisons here

L/ /_N_N e e » Evidence of chymotrypsin activity 3
mutations away from rat trypsin

,, Conversion
Positively [ STFIEEEREEEE
charged

(-]
o
IS

(-]
o
w

In silico comparison with Hedstrom

Fluorescence (RFU)

o
[

1000 2000 3000 4000 5000 6000
Time (s)

o i

[
o
o

ompensatory mut. The experiments were performed by Amaury Paveyranne, Timothé Lucas and Shoichi Yip



Boltzmann Machine-guided specificity conversion S0

Trypsin Chymotrypsin o .
Preliminary experimental results
Positivel ’_Conversion_>
ositively - - : .
charged Chymotrypsin activity :
104- — Bovin Chymotrypsin — Our approach (3 Mutations) X

1 —— Rat Trypsin - Qur approach (8 Mutations)
] Hedstrom (16 mutations) —

/ /\o Not possible to make quantitative

comparisons here

102 /
~?/_N_N e » Evidence of chymotrypsin activity 3
| | , . . , mutations away from rat trypsin
1000 2000 3000 4000 5000 6000

Time (s)

-
o
w

In silico comparison with Hedstrom

Fluorescence (RFU)

o
[

=
o
o

o

» Mutations located 1n the binding pocket

Zoom on the binding pocket

ompensatory mut. The experiments were performed by Amaury Paveyranne, Timothé Lucas and Shoichi Yip



Boltzmann Machine-guided specificity conversion S0

Trypsin Chymotrypsin

Preliminary experimental results

Chymotrypsin activity '
| == Bovin Chymotrypsin - Qur approach (3 Mutations)
104 - ~

{ = Rat Trypsin - Qur approach (8 Mutations)
] Hedstrom (16 mutations) —

/ /\o Not possible to make quantitative

comparisons here

102 /
\?/_N_N e e » Evidence of chymotrypsin activity 3
100- . l . | , mutations away from rat trypsin
0 1000 2000 3000 4000 5000 6000

Time (s)

N Conversion
Positively [ STFIEEEREEEE
charged

-
o
w

In silico comparison with Hedstrom

Fluorescence (RFU)

o
[

» Mutations located 1n the binding pocket

Zoom on the binding pocket

Other results & next steps:

» More precise characterization of
functional mutants

» Other conversions

The experiments were performed by Amaury Paveyranne, Timothé Lucas and Shoichi Yip



The undersampling problem

How to infer rich statistical
structure from limited data?

Stochastic Boltzmann Machine

sared pajejosy

Toy model: correct
undersampling-induced biases

Real data: model generative
without modification

Theoretical understanding?

In collaboration with Emily Hinds, Yaakov
Kleeorin, Rama Ranganathan (University of
Chicago, USA)
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The undersampling problem Investigate protein properties with statistical learning

Specificity conversion in S1A

How to infer rich statistical
family?

structure from limited data?

Predict compensatory mutations

Stochastic Boltzmann Machine
with Boltzmann Machine

Trypsin Chymotrypsin

Positively 1) SRR

charged

sated pajejosy

Toy model: correct
undersampling-induced biases

Real (.l?lta: modde.lfgen.e rative Evidence of chymotrypsin activity
without moditication 3 mutations away from rat trypsin

Theoretical understanding? Better experimental characterization

In collaboration with Amaury Paveyranne,
Timothé Lucas, Shoichi Yip, Cléement Nizak
(LJP, Sorbonne University, France)

In collaboration with Emily Hinds, Yaakov
Kleeorin, Rama Ranganathan (University of
Chicago, USA)



The undersampling problem

How to infer rich statistical
structure from limited data?

Stochastic Boltzmann Machine

sated pajejosy

Toy model: correct
undersampling-induced biases

Real data: model generative
without modification

Theoretical understanding?

In collaboration with Emily Hinds, Yaakov
Kleeorin, Rama Ranganathan (University of
Chicago, USA)
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Investigate protein properties with statistical learning

Specificity conversion in S1A
family?

Predict compensatory mutations
with Boltzmann Machine

Chymotrypsin

Trypsin

Evidence of chymotrypsin activity
3 mutations away from rat trypsin

Better experimental characterization

In collaboration with Amaury Paveyranne,
Timothé Lucas, Shoichi Yip, Cléement Nizak
(LJP, Sorbonne University, France)

Allosteric network of £. Coli DHFR

Support for an allosteric
mechanism obtained through
molecular dynamics simulations

In collaboration with Paul Guenon, Damien Laage,
Guillaume Stirnemann (ENS, France), Clément
Nizak (LJP, France), Karolina Filipowska, Kim

Reynolds (University of Texas, USA)
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